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Abstract

A 3-dimensional, coupled, heat transfer model and solution for multi-hole cooling is described in this paper. It couples DNS calcu-
lations of the primary turbulent flow, the backside flow and the flow in the injection holes by solving the 3-D heat conduction equation
for the wall with a mixed boundary condition, which leads to an iteration process to obtain a converged solution for the mean temper-
ature in the wall and in the flow. The model is tested for both a laminar and a turbulent primary flow and the results show that the
convergence to the solution is very efficient. The results obtained with this 3-D model are presented and compared with an adiabatic
and a 1-D, conducting-wall, model. A non-dimensional parameter (Biot number) representing the relative importance of in-plane heat
conduction in the wall is discussed. The cooling effectiveness predicted by the 3-D model is compared with experimental results at the

same Reynolds number and satisfactory agreement is achieved.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Modern gas turbine design, for example, seeks higher
efficiency and lower emissions and consequently more uni-
form temperatures in the combustor and less compressed
gas used as a coolant are desirable goals. An important
challenge then is to improve the efficiency of the cooling
system for the combustor liner. A multi-hole cooling sys-
tem (also called an “‘effusion cooling” system), especially
with a light weight ceramic matrix composite (CMC),
seems a promising cooling method for combustor liner pro-
tection. (A woven CMC is relatively easily provided with
an arbitrarily large number of cooling holes located at
the interstices of the weave.) By comparison with tradi-
tional discrete, film cooling, a multi-hole cooling system
that has a hole geometry and spacing which, compared
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with a boundary layer thickness, more nearly approaches
transpiration cooling, would obtain a more uniform sur-
face temperature and achieve a higher cooling efficiency
with cooling optimization. As we will see in this paper, a
multi-hole cooling system can make good use of the cool-
ing effects produced by the backside coolant flow and the
coolant flow through the injection holes.

With the development of computational capacity, it
seems possible, at low Reynolds number, to undertake a
direct numerical simulation of a multi-hole cooling system,
which is based on a DNS calculation of the flow fields with
some efficient technique (to be found, and the subject of
this paper) for coupling these flows through the heat con-
duction in the wall. The interaction of the primary hot flow
with the injected secondary coolant flow has been the main
issue investigated in most previous numerical studies. Adi-
abatic cooling effectiveness has been chosen, typically, to
evaluate the cooling performance for different flow condi-
tions and geometrical features of the cooling system. In
reality, however, due to the thermal conductivity of the
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Nomenclature

d hydraulic diameter

h heat transfer coefficient

k thermal conductivity

M blowing ratio defined as mass flow rate ratio of
coolant to primary flow: %

P hole to hole lateral distance

q heat flux

Re, Re, Reynolds number defined by stream wise dis-
tance and free stream velocity

Rey Reynolds number defined by the boundary layer
momentum thickness (6 in the usual notation)
and the free stream velocity

S hole to hole downstream distance
St Stanton number St = -~
. putp
t wall thickness
T temperature

u, v, w velocity components

X, y, z streamwise, normal, spanwise direction

U, mean turbulent boundary layer friction velocity
immediately upstream of the multi-hole cooling

Greek symbols

90.99 boundary layer thickness

0 cooling effectiveness defined by 0 = %
p density

v kinetic viscosity

Subscript and superscripts

1,2,3 upper wall surface, lower wall surface, hole
inner surface

aw adiabatic wall

coolant

hole

root mean square

wall

non-dimensional lengths scaled by "

free stream

g tzg=e

wall material, a multi-hole cooling system consists of three
cooling effects, as illustrated in Fig. 1. They are: (1) the
reduction of the wall temperature for an adiabatic wall as
a direct result of the coolant jets; (2) the conduction of heat
through the wall due to the thermal conductivity of the
wall material and the heat transfer to the backside flow
(i.e. “backside cooling™); (3) the heat transfer to the cool-
ant flow from the inner surface of the injection holes when
coolant passes through the holes (i.e. “internal cooling”).
The relative importance of each effect depends critically
on the geometrical features of the wall and the operating
conditions (e.g. static pressure, flow rates, etc.) of the cool-
ing system. The direct effect of the coolant jet, which is
often evaluated by using an adiabatic wall, has been inves-
tigated widely as in Lin et al. [1] and Fric et al. [2], and it is
a dominant effect at high blowing ratio (M > 1). The other
two effects, however, can be more important for a high effi-
ciency, low blowing ratio cooling system, such as a multi-
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Fig. 1. A schematic view of a typical multi-hole cooling system.

hole cooling system for multi-hole CMC materials that
can have a relatively large number of holes and percentage
open area with minimal cost penalty.

Various experimental and numerical studies of backside
cooling and/or internal cooling have been reported in the
literature. Leger et al. [3] measured the overall cooling
effectiveness, including the backside and internal cooling
effects, for a multi-hole metal plate and the results in their
case showed that the backside cooling effect accounted for
approximately two thirds of the total cooling effectiveness.
Martiny et al. [4] used a theoretical model to investigate the
heat absorption occurring inside the holes and on the back-
side surface and documented a significant rise in coolant
temperature through the hole. The backside and internal
cooling effect contributed half of the total cooling effect
in their case.

A Direct Numerical Simulation (DNS), which approxi-
mately couples the heat transfer to and from all surfaces,
was reported by Zhong and Brown [5]. They coupled the
heat transfer by proposing a local 1-D coupled model.
Based on the weak dependence of the backside heat
transfer coefficient, /15, on the primary flow, and the linear-
ity of the heat conduction in the wall, the fully coupled
problem was simplified into a set of iterations in which
the primary and the backside flow were separately and
alternately calculated. With the key assumption that the
heat flux through the wall is locally 1-D, a new thermal
boundary condition, which coupled the two flows, was
derived and used to solve the primary flow. In terms of
the geometry and variables in Fig. 2, we summarize here
the main steps taken to obtain this thermal boundary
condition:
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Fig. 2. Heat flux on both sides of the wall for the 1-D wall model.
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This provides a mixed boundary condition for the flow in
the region above the wall. The iteration process they used
to obtain a solution is illustrated below in Part A of
Fig. 4; it was found to converge quickly to a mean surface
temperature on both sides of the wall for both laminar and
turbulent primary flows.

The assumption of one dimensionality for the local heat
flux through the wall will be increasingly inaccurate, how-
ever, near the injection holes, where in-plane heat conduc-
tion will occur. Neglecting the in-plane heat conduction
would lead to an over-prediction of the temperature varia-
tion on the cooling surface, since this variation would be
reduced by the actual in-plane heat conduction. In this
paper, a 3-D coupled heat transfer model, which models
the actual steady heat conduction in the wall (assuming
only a given distribution of heat conductivity), is devel-
oped. The basic iteration process used by Zhong and
Brown [5] for the primary and backside flows is used but
the 3-D temperature distribution in the solid wall is calcu-
lated directly by solving the steady 3-D heat conduction
equation. A mixed boundary condition, related to the sur-
face temperature and the calculated local heat transfer
coefficient on both the upper and lower surfaces and on
the inner surface of each hole is introduced and used when
solving the heat conduction equation. It is shown in the
present paper that the boundary conditions that are used
can guarantee the uniqueness of the solution for the steady
heat conduction equation. Consequently, the iteration pro-
cess is found to be highly efficient. The converged solution
can be obtained within three iteration steps. In this paper,
the 3-D coupled model, including the mixed boundary

conditions and the modified iteration procedure, is
described and the results obtained are compared with an
adiabatic wall model and with the simpler 1-D coupled
model. We have also done experiments on multi-hole cool-
ing with CMC materials. This experimental work has used
the facility described in Zhong and Brown [5] and is in pro-
gress but we include some experimental results here at con-
ditions that duplicate those of the DNS calculations. The
comparison between the predictions and the experimental
data shows good agreement.

2. The 3-dimensional, coupled model
2.1. Description of the multi-hole cooling problem

As shown in Fig. 1, a multi-hole cooling system consists
of two flow regions, one above the wall and the other below
and through it, which, in principle, are coupled at all times
at the flow interface through continuity in pressure, veloc-
ity and temperature and their spatial derivatives. In this
paper the two flow regions are coupled through continuity
in the mean velocity components and the mean tempera-
ture profile at the exit of the hole. The mean temperature
on the wall surface and corresponding mean heat flux to
the wall must satisfy the steady, 3-D, heat conduction
equation. Thus the two flow regions are also coupled with
each other via the 3-D solid wall or we may say that the
temperature and heat flux inside the 3-D wall is determined
by the flow and thermal properties in these two flow
regions. How best to solve the heat conduction equation
with the thermal information obtained from the fluid flow
is the key point.

Considering the linearity of the heat conduction in the
wall, a fully coupled fluid—solid heat transfer problem can
be simplified into a decoupled iteration procedure based
on solving alternately the equations for the fluid flows
and for the solid wall. The thermal interaction between
the fluid flow and solid wall requires continuity in the tem-
perature and heat flux across the fluid—solid interface. In
this paper, instead of iterating to try and match tempera-
ture and heat flux directly at the fluid-solid interface as
used in conventional heat transfer coupling, a mixed ther-
mal boundary condition, governed by the calculated heat
transfer coefficients of both the primary and backside
flows, is used; it is expected to speed up the convergence
to the solution.

2.2. Mixed boundary conditions for the 3-D wall solution

We expect the heat transfer coefficient, 7 = ¥, to depend
weakly on the actual temperature at the wall for a specific
flow field, so using it instead of ¢, or Ty, to couple the fluid
and solid regimes would substantially improve the speed of
convergence. Fig. 3 shows the boundary conditions used in
the 3-D coupled model; the mixed boundary conditions for
the wall arise from the definition of a heat transfer coeffi-
cient as follows:
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Fig. 3. Boundary conditions used for solving the wall temperature.
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where h; = m, hy, = Twz‘V_ZTC, hy = TszjTh and 7 is the sur-

face normal vector and where T is the temperature of the
coolant and T}, is determined from the average centerline
temperature of the coolant over the length of the hole
and where q«(; is the heat flux at the surface, calculated in
the fluid, at each iteration.

An adiabatic wall condition is used initially for the
upstream and downstream boundaries of the wall as in
Fig. 3. A symmetry boundary condition is used initially
in the spanwise direction for laminar flow cases and in
the turbulent cases a periodic condition.

The mixed boundary condition gives a unique solution
for the Laplace equation for the specific case when the heat
transfer coefficients, %, h,, h; defined above, are all positive
(see Appendix A for the proof). Negative heat transfer
coefficients, however, can physically exist on some regions
of the surface; for example /; can be negative in a small
region just downstream of the injection hole where the wall
is locally hotter than the flow that is near the surface (as is
evident in Fig. 18 for a calculated /4;). In such a negative-i,
region, locally we replace the mixed boundary condition by
the calculated ¢/,. We discuss this case also in Appendix A

' Note: If instead i, is defined as h; = Twlqg'm, then it is clear that as
Tw1 — Tay goes to zero (and goes negative because of the in-plane heat
conduction, for example), 4; will, in general, be subject to large
fluctuations with each iteration for T,;. This will lead to slow conver-
gence. While the uniqueness argument (Appendix A) still applies since T,y
is a given function on the cooling surface of the wall, this definition would
not overcome the fact that /; can become negative due to the in-plane heat
conduction. It is therefore preferable in this context to define /; as in (5),
since Ty, is always less than 7. By this definition, large fluctuations in /,
with each iteration are avoided.

and prove that this approach (i.e. the mixed boundary con-
dition everywhere except where the surface heat flux is used
in the small regions where /4; <0) gives a unique solution
for the temperature field and heat flux in the wall. This is
the basic methodology that is used in all of the following
calculations.

2.3. Iteration procedure

The iteration process has two principal parts: the first,
Part A as illustrated in Fig. 4, obtains a good approxima-
tion for the initial heat transfer coefficients on each wall
surface and the second, Part B in Fig. 4, is the main loop
of the iteration and employs the full 3-D heat conduction
in the wall. Two approaches have been used to obtain ini-
tial values for the heat transfer coefficients. One, as shown
in Part A, is based on the previous 1-D wall model and is
described as follows. (The second, discussed in Section
4.1, is based on an arbitrary choice of an initial wall tem-
perature, for example the mean of the temperature of the
coolant and of the hot gas.)

The primary flow, cooled by the coolant jets, is first
solved assuming an adiabatic wall. The computed adiabatic
wall temperature is then imposed as a temperature bound-
ary condition for the backside coolant flow. Once the back-
side flow (including flow through the hole) reaches a steady
state, the heat flux through the backside wall surface and
through the hole inner surface can be calculated and from
this the backside heat transfer coefficient 4, and internal
heat transfer coefficient /5. At this point, /4, is used to solve
the primary flow with the thermal boundary condition
given by Eq. (4), as proposed in the 1-D wall model of
Zhong and Brown. Using Eq. (4) in this way and the tem-
perature and velocity profiles at the exit of the hole
obtained by solving the backside flow, a new temperature
Twi1, heat flux ¢y and A; on the upper wall surface can
be calculated. These calculated distributions of %y, A, and
hy are then used as the initial values in the boundary con-
ditions, which are used to solve the heat conduction equa-
tion as in Part B of Fig. 4.

Solving the heat conduction equation with the mixed
boundary conditions, Egs. (5)—(7), provides the distribu-
tion of temperature and heat flux inside the wall. With
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Fig. 4. Flow chart of the iterative process (variables in bold represents the data for fluid/solid communication).

the new wall temperatures: Ty, Tw2, Tw3, obtained
from the 3-D heat conduction equation, which are now
used as the temperature boundary conditions for the flow
regions, new calculations of the primary flow and of the
backside flow give new heat fluxes and new estimates for
hi, hy, hsy on the cooling surface, the backside surface and
the hole inner surface. The updated 4, h,, 3 are then used
to solve the 3-D heat equation again. The iterative steps are
repeated until both the wall temperature and the surface
heat flux have converged within an acceptable error.
Fig. 4 is a flow chart representing the whole process. The
mixed boundary condition, small changes with each itera-
tion in the heat transfer coefficients and the uniqueness of
the solution to the 3-D heat conduction equation ensure
rapid convergence.

3. Numerical methods

The numerical schemes are based on the finite difference
method and the DNS calculations used a code developed
by Martin et al. [6,7], as discussed in Zhong and Brown
[5]. The bandwidth optimized Sth-order scheme with slight
upwind characteristics, proposed by Jiang and Shu [8] for
the development of a low dissipation “‘essential non-oscilla-
tion (ENO)” scheme, is applied for the approximation of
the convective terms in the Navier—Stokes equations. The
standard 4th-order central scheme is applied for the viscous
terms and the third-order Runge-Kutta method for the
time terms. The solution is regarded as having reached a
steady state when no significant change in the surface tem-
perature or heat flux is observed after taking an average
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over a length of time that is long compared with the char-
acteristic time of the velocity fluctuations. The second-
order derivative terms in the heat conduction equation
are approximated by a standard second-order central
scheme and the interpolation of the data at the fluid—solid
interface is implemented via weighting functions evaluated
by the distance between fluid and solid grid points; the
overall accuracy is second-order. While not as highly
resolved as it could be, for the present purpose we have
used a mesh resolution for the near wall turbulent flow of
Ax" =115, Az" =9.8 in the streamwise and spanwise
directions respectively, and in the normal direction, the first
grid point away from the wall is at Ay" = 0.2 and there are
19 grid points located below y* = 10. The computational
domain is 10.56¢ 99 (J¢.99 is the inlet boundary layer thick-
ness) in the x direction, 2.40g99 in the z direction and
4.400 99 in the y direction. The corresponding length and
width of each hole are shown in Table 2, for which the
non-dimensional length and width are 43 and 29, in wall
units () respectively. We impose zero normal gradients
at the lfpper surface of the computational domain bound-
ary and no-slip conditions for the velocity boundary condi-
tion at the wall. The velocity and temperature profiles

a y X
1

Primary flow

q

1333

calculated by solving the backside cavity flow are imposed
at the hole in the plane of the upper wall surface for the
flow above this surface. At the downstream boundary, a
convective boundary condition of the form %Jrﬁ% =0
is applied, where, U is the local bulk velocity.

4. Tests of the model
4.1. A test case with a laminar primary flow and a single hole

As a first test of the method, a laminar boundary layer
flow over a flat plate with a single row of coolant jets
was calculated. The rectangular injection hole in this case
is normal to the surface and the coolant flows perpendicu-
larly towards the backside wall surface. Fig. 5(a) gives a
schematic diagram of the cooling system and Fig. 5(b) gives
a side view and the dimensions. Table 1 gives the parame-
ters for this case. The thermal conductivity, specific heat
and density are the values for the ceramic matrix composite
specimen used in the later experiments. No experiment was
performed with a laminar flow and a single row of holes.
The dimensions of the hole are approximately those of the
ceramic matrix specimen and the holes are approximately

rectangle normal hole

Cooling wall T T T

Coolant flow

#

b 5d

A
A\ 4

1.4d

adiabatic backside cavity wall

5d

A

A\ 4
l—

1.6d
I d
o

bttt

Fig. 5. Schematic view of the multi-hole cooling configuration.

Table 1

Flow and wall properties for the laminar cooling cases

Flow condition = Re at domain inlet 2.5E04 Free stream temperature (K) 360 Free stream velocity (m/s) 20
Coolant temperature (K) 300 M (blowing ratio) 0.15 J0.99 (mm) 0.91

Wall material Thermal conductivity (W/mK) 4.5 Density (kg/m?) 4000 Specific heat (J/kg K) 700

Wall geometry  Injection hole Rectangle  Hole size (mm) (length x width) 1.3 x 0.72 ¢ (mm) 1.5
P (mm) 1.8 Injection angle 90 d (mm) 0.93
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Fig. 6. Surface temperature contours (a) adiabatic model; (b) 1-D coupled
model [5]; (¢) 3-D coupled model (blank regions denote the injection hole,
(c) have a different temperature scale from figure (a) and (b)).

rectangular as a result of the woven material and the pro-
cess used to generate the holes.

Fig. 6% is the cooling surface temperature calculated with
three different wall models: (a) an adiabatic wall, (b) a 1-D
conducting wall and (c) the 3-D conducting wall. Com-
pared to the adiabatic wall model, the other two models
give significantly lower surface temperatures; the compari-
son demonstrates the additional cooling effect due to back-
side and internal cooling. The most important difference
between the 1-D and the 3-D wall model is the much smal-
ler temperature variation on the cooling surface obtained
with the 3-D wall model. This shows, in this case, that there
is a significant horizontal heat flux, which acts to smooth
out the surface temperature. Fig. 7(a) and (b) shows the
heat flux vectors on the cooling surface and on an x—y
plane along the hole centerline (obtained from the 3-D
solution) with the temperature contours as a background.
Not unexpectedly the horizontal heat flux component
becomes a larger fraction of the heat flux around the injec-
tion hole, and clearly here the 1-D heat flux assumption is
inaccurate.

The convergence to the solution is evident in Fig. 8
where the spanwise-averaged surface temperatures (exclud-
ing the hole) have been plotted after each iteration step.
For this cooling case, only three steps (one in Part A,
two in Part B) are necessary to reach a converged solution.
Fig. 9(a) and (b) shows the spanwise-averaged heat transfer
coefficients /; and %, calculated in each fluid region at each
step. The convergence of the solution is again confirmed
and /i, may be seen to converge faster than /; (as might
be expected because of the small region where /4, is either

2 Note: Figures with the x-coordinate starting from zero define the origin
at the upstream boundary of the backside cavity as shown in Fig. 5.

a 0.002

0.0015

N 0.001
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0.002 0.004 0.006
X

SIS\

N
0.002 0.003 0.004 0.005 0.006 0.007

Fig. 7. Heat flux vector (a) on the cooling surface; (b) on the x—y plane
through the centerline.

Spanwise avergaed cooling surface temperaure (K)

—0O—: after 1st iteration (PatA)
—O—: after 2nd iteration (PatB)
—4—; after 3rd iteration (PatB)
—v—: after 4th iteration (PatB)

335

330+

Tw, (K)

325+

320 T T T T T T T
0.000  0.001 0.002 0.003 0.004 0.005 0.006 0.007
x(m)

Fig. 8. Spanwise-averaged cooling surface temperature (the bar denotes
the hole location).

negative or it has a relatively small positive value, see
Section 2.2).

We note that, instead of using the 1-D model to obtain
initial estimates for /4y, &, h3, we can begin by imposing an
arbitrary constant temperature boundary condition, for
instance, Ty = T'vo =3 (T + T¢). The flow in the two
regions can then be computed to find Ay, hy, h3 which
may then be used as initial estimates with the 3-D heat
conduction equation to find new distributions for the wall
temperature and the iteration (Part B in Fig. 4) can again
proceed. When tested with this laminar case again only
three iteration steps were necessary to reach a converged
solution.

4.2. A test case with a turbulent primary flow and three rows
of downstream holes

The 3-D model was also tested with a turbulent bound-
ary layer as the primary flow and in this case with three
downstream rows of injection holes. The Reynolds number
based on the upstream boundary layer momentum thick-
ness, Rey, was chosen to be 620. The corresponding Re,
(or Re) assuming a flat plate is approximately 200,000.
For this computational case, the free stream turbulence
level is essentially zero. The DNS calculation of the turbu-
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Fig. 9. Spanwise averaged heat transfer coefficients at each iteration step (a) /; and (b) h,.

lent boundary layer flow was generated by imposing, at an
upstream flow boundary, a mean turbulent velocity
profile (obtained by a RANS calculation with a Baldwin—
Lomax turbulence model at the same Rey) plus steady,
three-dimensional, velocity perturbations comparable in
magnitude with the classical, experimentally measured,
rms values at this Rey. Such a steady velocity distribution
in the boundary layer will be unstable and the computed
boundary layer will rapidly become turbulent. Ideally, in
the calculation, the turbulent boundary layer would be
allowed to develop over a large length. For the purpose
of this test the development length was only 8J¢ 99, but even
at this location the Reynolds stress and rms turbulent
velocity fluctuations were relatively close (Fig. 10) to those

® ; v ; A ; m : Spalart(1988) u_rms; w_rms; v_rms; <u'v'>

—O—; —v—; —&—; —3—: DNS u_rms; w_rms; v_rms; <u'v'> at x=8delta_99

T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
y/delta_99

Fig. 10. Fluctuations compared with results from [9].

of more extensive DNS calculations at a comparable Rey
[9]; the cooling holes were then located downstream of this
development length with three holes located in the stream-
wise direction and six holes in the spanwise direction. The
ratio of the boundary layer thickness to the holes size (d)
was approximately 8.

Table 2 gives the flow conditions, the wall geometry and
locations of the holes etc. The properties of the wall mate-
rial are the same as those in the laminar case. The shape,
size and spacing of the holes used in the DNS calculation
are chosen to be close to those of the CMC panel used in
the experiments in the wind tunnel. In the calculation,
the wall temperature and heat flux used to calculate the
heat transfer coefficient were time-averaged (obtained by
averaging the calculated local values over a period of
2-5 ‘;‘}ﬁ) It is important to appreciate that the coupling
between the two flow regions and the wall is through mean
values and any additional heat transfer, for example,
resulting from static pressure fluctuations and unsteady
flow in the cooling holes, is not being captured. (For a
mean pressure drop along the streamlines through the cav-
ity, which is large compared with the level of the rms static
pressure fluctuations, we expect the approximation of cou-
pling with mean values to be relatively good, but this aspect
has not yet been studied in detail.) Two injection cases were
considered, one with a low blowing ratio M = 0.25 and the
second with a moderate blowing ratio M = 0.43.

For this turbulent case, the adiabatic boundary condi-
tion at the upstream boundary of the wall is replaced by
a boundary condition that more closely represents the
experimental condition. Fig. 11 shows the experimental
configuration. A ceramic holder with a length of 10 mm

Table 2

Flow and wall properties for the turbulent cooling cases

Flow condition Re at domain inlet 2E05 Free stream temperature (K) 300 Free stream velocity (m/s) 10
Coolant temperature (K) 250 M (blowing ratio) 0.25, 0.43

Wall geometry Injection hole size (mm) 1.35, 0.92 Injection angle 90 ¢t (mm) 1.5
P (mm) 2.8 S (mm) 6.6 d (mm) 1.06
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Fig. 11. The improved upstream boundary condition.

4—

is used to locate the multi-hole panel and to insulate it from
the metal tunnel walls. The thermal conductivity of the
ceramic holder is approximately 0.042 W/m K, which is
much lower than that of the cooling panel. An isothermal
boundary condition with 7= T, is then applied at the
upstream edge of the ceramic holder. The ceramic holder
and the part of the wall panel attached to it where there
is no-backside-flow are all included in the 3-D, heat con-
duction solver.

Fig. 12 shows results for the M = 0.25 case. In particu-
lar, it shows the converged cooling surface temperature
(spanwise-averaged, excluding the hole) calculated with

,,,,,,, adiabatic wall model
,,,,, 1-D coupling model
—— 3-D coupling model

top surface temperature (K)

250
0.000

T T T T 1
0.020 0.025 0.030 0.035 0.040

X (m)

T T T
0.005 0.010 0.015

Fig. 12. Spanwise-averaged cooling surface temperature (bar denotes the
hole location) for the turbulent cooling case Re ~ 200,000.

a 0.003
0.002
0.001

0

0.015 0.02

O-
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an adiabatic, a 1-D and the full 3-D, wall model. Com-
pared with the adiabatic wall model, the lower surface tem-
peratures obtained with the 1-D and 3-D models confirm
the considerable contribution to the overall effectiveness
of backside and internal cooling for this cooling system.
The surface temperature obtained with the 3-D model is
much smoother than obtained with the 1-D model which
confirms the significant role played by in-plane conduction
in the wall. The result of the 3-D model also indicates the
effectiveness of the ceramic holder as an insulator for the
cooling panel since there is only a small temperature drop
along the holder upstream of the panel. The surface
temperature curves show the approach towards a periodic
temperature distribution with respect to each row of holes.
Fig. 13(a) gives the cooling surface temperature contours at
M = 0.25. The temperature is relatively uniform due to the
strong in-plane heat conduction and the relatively large
open area for this specific cooling panel at this Reynolds
number. Fig. 15(a) shows the heat flux vector in the wall
on an x—y plane through the centerline of the holes and
the corresponding temperature contours obtained from
the 3-D solution. The horizontal heat flux is significant,
especially in the vicinity of each hole. For this turbulent
test case, the solution with the 3-D model converges
quickly and only three iteration steps (in Part B of
Fig. 4) were required.

It is possible to extend, approximately, the application
of the current DNS calculation to a cooling system at
higher Reynolds number if we assume that the local Stan-
ton numbers (S?) of both the primary and the backside
flows are weakly dependent on the Reynolds number. If
we keep the same mass flow rate ratio and the same cooling
configuration then, as a first approximation, we assume
Stanton number does not change with Reynolds number.
Thus the local heat transfer coefficient will be proportional
to the local mass flow rate: pu. In particular, the 4, 5, and
h; obtained at low Reynolds number from the current DNS
calculation would be modified, as in (8), and then used in
the 3-D wall solver for a higher Reynolds number case

higher Re higher
hhigher Re __ Jycurrent ('Du)lyzﬁ __ gcurrent Re (8)
1,23 — "123 ( )current Re — ""1,23 Recurrent
123

! ]

0.025 0.03

262 265 268 271 274 277 280 283 286 289 292

|
=
002

0.015

0.025 0.03

262 265 268 271 274 277 280 283 286 289 292

Fig. 13. Cooling surface temperature contours (a) Re ~ 200,000 and (b) Re ~ 4,000,000.
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(For a laminar backside cooling flow, a better approxima-

tion for heat transfer coefficient at higher Reynolds number
higher Re

higher Re current (pu)
would be #, =h; W)CZUW)
2

Based on the assumption of (8), (that the Stanton num-
ber is independent of Reynolds number), Fig. 14 gives the
spanwise-averaged cooling effectiveness 6 at a blowing
ratio of M =0.25 for a range of Reynolds numbers.
Fig. 13(b) is the calculated surface temperature at a higher
Reynolds number (Re ~ 4,000,000) using the above
assumption. It is interesting that there is an increase in
the variation of the local cooling effectiveness (i.e. the sur-
face temperature) as Reynolds number increases. This indi-
cates that the 3-D wall model becomes increasingly like the
1-D wall model at higher Reynolds number. To verify that
that is the case, the heat flux vector and the isotherms in the
wall on the x—y plane through the centerline of the holes
are shown in Fig. 15(a) and (b) for Re ~ 200,000 and
Re ~ 4,000,000. Except in the vicinity of the hole, the heat
flux vector points mostly downwards for the high Reynolds
number case; the heat flux for the low Reynolds number
case, however, has a much larger horizontal component.

The approach towards the 1-D model of the 3-D model
as Reynolds number increases can be readily explained.
When the Reynolds number is increased, the convection
of heat from the surface to the fluid is enhanced and thus
the relative effect of in-plane heat conduction in the wall
is diminished. A non-dimensional parameter, which will
represent the relative importance of wall, in-plane, heat
conduction, is 1 = ,f’—v’v (a Biot number). For the two Rey-
nolds number cases given in Fig. 13 we obtained

a )
ARe~200,000 ™~ 00257 ARe~4,000,000 ™ 0.5

where, the value used for & was the mean value over the
upper surface of the wall.

From the DNS solution for the primary flow, Fig. 16(a)
and (b) shows the ensemble-averaged® temperature con-
tours and velocity vectors downstream of the third row
of holes on an x—y plane through the hole centerline for
a blowing ratio M =0.25. Fig. 17(a) and (b) are for
M = 0.43. The strong effect of the turbulent mixing, cap-
tured by DNS, is very evident in the temperature figures.
A comparison between Fig. 16(a) and Fig. 17(a) indicates
the effect of the larger blowing ratio, which causes stronger
mixing and a greater deficit in the velocity profiles. For
both cases, no substantial region of separation of coolant
from the wall (in the mean) is calculated. Fig. 18 gives
the calculated h; at M = 0.25. The reduction in /; down-
stream of the holes is evident as also the small region of
negative 4, indicating a negative heat flux to the wall.
Fig. 19 is the calculated backside heat transfer coefficient
h,. Note the region of large /4, in the vicinity of the holes,

3 “Ensemble average” means the average of each variable at a given
time, at the same location with respect to the six hole locations in the
spanwise direction.

—o— Re, ~ 200,000
] —o— Re, ~ 2,000,000
07] —&—Re ~6,000,000

0.8

cooling effectiveness

Fig. 14. Cooling effectiveness 6 predicted by 3-D model for the cooling
system at different Re.

which is a result of the local acceleration of the flow and
reduced thermal boundary layer thickness.

As a summary, Table 3 presents the overall cooling per-
formance at the two blowing ratios for the CMC cooling
panel that has been studied. All the values in the table have
been obtained by taking the average over the whole x—z
plane. Two general comments can be made: (1) The
front-side heat transfer coefficient /; decreases with blow-
ing ratio and the backside heat transfer coefficient /,
increases. This clearly leads to a lower surface temperature
and higher cooling effectiveness with blowing ratio for
these two cases. (2) Compared with the overall cooling
effectiveness, the adiabatic cooling effect i.e. the effect
directly caused by coolant jet/primary flow interaction
becomes more important as the blowing ratio increases.
The results at higher Reynolds number based on the
assumption of constant Stanton number give a correspond-
ing global cooling effectiveness at Re ~ 4,000,000 of 0.35
for M =0.25 and 0.4 for M = 0.43 respectively.

4.3. Comparison with experimental results

In parallel with the numerical study, experiments were
conducted to investigate the cooling performance for an
oxide—oxide CMC cooling panel with multiple rows of nor-
mal holes. The specimen is relevant to potential gas turbine
applications as discussed by Cox et al. [10]. The special pur-
pose wind tunnel and the experimental arrangement for
this study are discussed in detail in Zhong and Brown [5].
In this facility, experiments on a cooling system over a
range of Reynolds numbers can be performed simply by
keeping the same temperatures and velocities and increas-
ing tunnel pressure from 1 to 20 atmospheres. The whole
tunnel has been insulated so that the initial effects of heat
loss through the tunnel wall, at low Reynolds number
(pressure), have been eliminated to a satisfactory level.
Fig. 20 is a photograph of the insulated tunnel and the
cooling flow injection system. Fig. 21 is a photograph of
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Fig. 15. Heat flux vectors and isotherms on a x—y plane for different Re: (a) Re ~ 200,000; (b) Re ~ 4,000,000 (vector length in (a) and (b) is not to scale).

ylé

250 260 270 280 290 300

Fig. 16. Temperature contours and velocity vectors downstream of an
injection hole on an x—y plane (M = 0.25).

the multi-holed ceramic cooling surface. The cooling sur-
face consists of multiple rows of approximately rectangu-
lar, normal holes. It is apparent that the holes have a
poor uniformity, so an average hole size was chosen for
the numerical study. The ceramic panel has a thickness of
1.5mm and a relatively large percentage open area of
7%. The thermal properties of the material are the same
as the values used in the numerical study.

The free stream turbulence level in the tunnel test section
was measured and, in the absence of the intended turning
vanes, a level of ~2% for 200,000 < Re, < 2,000,000 was
found. Although free stream turbulence is not considered
in the numerical study, the numerical results are compared
with the experimental data since at this relatively low free
stream turbulence level, the effect on cooling performance
is expected to be weak compared with other parameters
such as blowing ratio.

Surface temperatures were measured with thermocou-
ples mounted on the cooling surface and velocity and tem-

y/&

250 260 270 280 290 300

Fig. 17. Temperature contours and velocity vectors downstream of an
injection hole on an x—y plane (M = 0.43).

perature profiles were obtained by traversing a pitot probe
and a temperature probe across the boundary layer at the
same physical location as in the numerical study (down-
stream of the third spanwise row). Fig. 22 is a schematic
diagram showing the location of the surface temperature
measurements and the location for the survey for the
velocity and temperature profiles. The backside flow tem-
perature was measured by a thermocouple mounted
approximately 6 mm beneath the cooling surface and well
outside the backside flow boundary layer. The backside
cavity pressure was also measured and used to determine
the injection velocity through the hole from the pressure
difference between it and static pressure of the primary
flow. The uncertainty in the measurement was estimated
from measurement resolution and the repeatability of the
results and found to be approximately <4% for the cooling
effectiveness and <8% for the blowing ratio.

Fig. 23(a)-(d) presents the results for the cooling
effectiveness at locations (1)—(4) shown in Fig. 22 at four
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Reynolds numbers. They show the initial increase in the
cooling effectiveness with blowing ratio. For M > 0.7, how-
ever, the cooling effectiveness increases weakly with the
blowing ratio. This suggests that a local film of coolant
could have been established above the cooling surface at
large blowing ratio. A dependence on Reynolds number
is observed in the figures (a small reduction in effectiveness
with increasing Reynolds number), and the effect is more
significant at small blowing ratios and diminishes at large
blowing ratios. This can be explained by a combined effect
of the backside cooling and heat conduction in the wall.
When the backside cooling effect is significant (for small
blowing ratio), the increase in the system Reynolds num-
ber, i.e. the system pressure and density, increases the
transport of heat in the flow regions, which then increases
the heat flux through the wall and causes the temperature
drop across the wall to become larger and raises the upper
surface temperature. The numerical results at two low-to-
moderate blowing ratios, discussed in the last section, are
consistent with this Reynolds number dependence.
Results of the temperature measurements for two blow-
ing ratios (M =0.25, M =0.43) and a direct comparison
between the measured and calculated cooling effectiveness
(using the 3-D procedure of this paper) are shown in

Table 3
Overall cooling performance for the CMC cooling panel

=

Fig. 20. Insulated closed-circuit wind tunnel with the secondary flow
injection system.

R R R R TR T LU T R R

ERERANT MY}

Fig. 21. The multi-holed ceramic surface.

Fig. 24(a). A comparison between measurements at other
Reynolds numbers and predictions based on the constant
Stanton number approximation are shown in Fig. 24(b).
As shown in these figures, the numerical predictions agree
well with the experimental results. (The experimental speci-
men has a variation in the size of the holes, which has not
been modeled, and there are other experimental and numer-
ical factors such as the roughness of the real specimen, which
could account for the remaining difference.) In Fig. 24(b),
the small under-prediction of the cooling effectiveness

Blowing ratio Global /; (W/m? K) Global /1, (W/m?K)

Global cooling effectiveness Gobal adiabatic cooling effectiveness

0.25 (Re ~ 200,000) 71.3 80.5
0.43 (Re ~ 200,000) 55.2 103.2

0.45 0.14
0.51 0.23
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Fig. 22. A schematic diagram showing locations of surface temperature measurements and 7, V' probes.
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Fig. 23. Cooling effectiveness as a function of blowing ratio at four streamwise locations and at different Reynolds numbers (a) location 1; (b) location 2;

(c) location 3; (d) location 4.

observed for the higher blowing ratio case and over-predic-
tion for the lower blowing ratio case could be a result of the
approximation of constant Stanton number that is used for
the heat transfer coefficients at higher Re, or possibly an
effect of the idealized upstream boundary condition used
when solving the 3-D heat conduction equation.

In Fig. 25(a) and (b) the measured velocity and tempera-
ture profiles are compared with the numerical results at the

same physical location. They agree with each other satisfac-
torily. The agreement between the measured temperature
profile and the numerical prediction, using the 3-D heat
transfer model rather than 1-D model, is now significantly
better than it was previously in Zhong and Brown [5]. Apart
from the model improvement, the tunnel has now been well
insulated so that the previous initial heat transfer through
the tunnel wall has been substantially reduced.
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5. Conclusions

In the present study, a 3-dimensional, coupled, DNS
heat transfer model is introduced and applied to investigate
a multi-hole, woven CMC cooling surface. Based on the
results, the following conclusions can be drawn:

1. The mixed boundary condition governed by a local heat
transfer coefficient on all surfaces is proposed for the full
3-D coupling because of the weak dependence of the
heat transfer coefficient on the surface temperature. It
is proved that uniqueness is guaranteed only if the heat
transfer coefficient is positive. In the small region on the
surface where it is not positive the local heat flux is used.
In this case it is also proved that the boundary condi-
tions guarantee the uniqueness of the solution of the
steady heat conduction equation. The methodology,
which couples the fluid flow and the conduction in the
wall by exploiting this boundary condition can therefore
be expected to achieve rapid convergence.

2. The 3-dimensional model with its iteration procedure is
found to converge quickly and a converged solution for

the temperature field in the wall can be obtained in less
than 3-4 iteration steps.

. The cooling effectiveness obtained with the 3-dimen-

sional model is much higher than that for an adiabatic
wall model. This implies that the backside cooling and
internal cooling, for the CMC cooling panel at blowing
ratios of 0.25 and 0.43, plays a substantial role.

. The 3-dimensional model reveals significant in-plane

heat conduction in the wall and a much smaller varia-
tion in surface temperature when compared with the
1-dimensional wall model.

. The 3-dimensional wall model approaches the 1-dimen-

sional wall model as the Reynolds number is increased
and a Biot number is chosen as a parameter that repre-
sents the relative importance of the in-plane heat
conduction.

. The cooling effectiveness predictions, found with the

DNS flow calculations and the 3-dimensional heat con-
duction model, agree well with the experimental results
and the technique of extending the current low Reynolds
number DNS results to higher Reynolds number cases
has proven to be a reasonable first approximation.



1342 F. Zhong, G.L. Brown/ International Journal of Heat and Mass Transfer 50 (2007) 13281343

The three-dimensional, coupled, DNS approach can
now be used to answer many questions on the optimal
geometry of the cooling holes, on the details of the physical
flow field and heat flux in the neighborhood of holes, on
comparisons with conventional engineering models and
on effects of the temperature ratio etc.

The current model, however, is based on coupling mean
variables and it therefore can not follow transient cooling
processes. A possible modification of the current model
to include transient aspects is to solve the flow field by
DNS and the unsteady heat conduction equation in the
solid wall and to couple them simultaneously. This, of
course would be an expensive computation, but it offers
the prospect of providing information from which thermal
strains, caused by temperature and heat flux fluctuations,
could be calculated. It is a principal objective for future
work.
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Appendix A

Consider the Laplace equation, V2¢ = 0, with a mixed
boundary condition of the general form

1)

h—L = A-1
ap+b = (A1)
where, a, b, ¢ are coefficients which can be functions of
space on the boundary.

If we define ¥ = V¢ and since V-5 =0

/V-((pﬁ)dV:/Mde (A-2)
Then using Gauss’ Theorem, we have
/ WPy = /(pﬁ- jids (A-3)

If we assume ¢ and ¢’ are two distinct solutions which sat-
isfy the same boundary condition, then the linearity of the
Laplace equation requires that ¢ — ¢’ is also a solution.
Thus as in (A-3)

/|\7717|2de /(go— @ —1) 7ds

~ [(0-o)To-vo) ids ()

Then Eq. (A-4) can be rewritten as

- 2 _ o a_@_%
/\v v|dV—/((p (p)(an o ds

With the mixed boundary condition (A-1) substituted into
Eq. (A-5), we have

[rr-wrar =[St ayas

Thus, when ¢ > 0, the equality of the left and right-hand
sides of Eq. (A-6) is only possible if both sides are equal
to zero, which ensures that Vo = V¢’ everywhere within
the volume and ¢ = ¢’ on the boundary, so that, upon inte-
gration, ¢ = ¢’ everywhere within the volume and on the
boundary, i.e. the boundary condition with ¢ > 0 ensures
a unique solution.

Now, rewriting the mixed BC (1) of Eq. (95),
—2—5 Wl = ;’—;(Twl —T), for example, in the form of Eq.
(A-1), then the ratio ¢ is f—v‘V, and hence /; > 0 is required
for the uniqueness of the solution for the temperature field
T. Similarly, we find that A, and /3 are required to be non-
negative.

In fact, we find small regions where /#; <0 and then we
replace the mixed BC with the actual heat flux ¢/, in this
region. This, too, guarantees a unique solution since if
the area over which 4; <0 is S; then Eq. (A-4) can be
rewritten as

/\Y)’—z’;”|2dV:/ (o — ") (Vo —V¢') idS
S-S,

(A-5)

(A-6)

+ / (0 — 0)[(Vo—Ve)-Alds (A7)

If Vo = V¢’ on the boundary of S; (as imposed by the heat
flux q\fvl on the boundary), the second term on the right-
hand side of Eq. (A-7) is zero, so that again, we have

/\v—mde:/” gy ds
1

and since § > 0 on the surface § — Sy, then as above, the
equality of the left and right-hand sides of Eq. (A-8) is only
possible if both sides are zero. Thus, we have Vo = V¢'
everywhere within the volume and ¢ = ¢’ on the boundary
of S — S; and also V¢ = V¢’ on S;. Thus, upon integra-
tion, ¢ = ¢’ everywhere within and on the boundary
(assuming continuity of ¢) and the solution is therefore
unique.

(A-8)
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